Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 21053, 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2151107

ABSTRACT

The 2019 global coronavirus (COVID-19) pandemic has brought the world to a grinding halt, highlighting the urgent need for therapeutic and preventive solutions to slow the spread of emerging viruses. The objective of this study was to assess the anti-SARS-CoV-2 effectiveness of 8 FDA-approved cationic amphiphilic drugs (CADs). SARS-CoV-2-infected Vero cells, Calu-3 cells and primary Human Nasal Epithelial Cells (HNEC) were used to investigate the effects of CADs and revealed their antiviral mode of action. Among the CADs tested, desloratadine, a commonly used antiallergic, well-tolerated with no major side effects, potently reduced the production of SARS-CoV-2 RNA in Vero-E6 cells. Interestingly, desloratadine was also effective against HCoV-229E and HCoV-OC43 showing that it possessed broad-spectrum anti-coronavirus activity. Investigation of its mode of action revealed that it targeted an early step of virus lifecycle and blocked SARS-CoV-2 entry through the endosomal pathway. Finally, the ex vivo kinetic of the antiviral effect of desloratadine was evaluated on primary Human Nasal Epithelial Cells (HNEC), showing a significant delay of viral RNA production with a maximal reduction reached after 72 h of treatment. Thus, this treatment could provide a substantial contribution to prophylaxis and systemic therapy of COVID-19 or other coronaviruses infections and requires further studies.

2.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-2108398

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Antiviral Restriction Factors , COVID-19 , Neoplasms , T-Lymphocytes , Antibodies, Neutralizing , Antiviral Restriction Factors/immunology , COVID-19/immunology , Humans , Neoplasms/complications , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology
3.
J Extracell Vesicles ; 11(10): e12269, 2022 10.
Article in English | MEDLINE | ID: covidwho-2084354

ABSTRACT

Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , Spike Glycoprotein, Coronavirus/chemistry , Furin , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Proviruses/metabolism , Lipid Bilayers , Virus Internalization , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Cathepsins
4.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: covidwho-2006230

ABSTRACT

Immunocompromised individuals generally fail to mount efficacious immune humoral responses following vaccination. The emergence of SARS-CoV-2 variants of concern has raised the question as to whether levels of anti-spike protein antibodies achieved after two or three doses of the vaccine efficiently protect against breakthrough infection in the context of immune suppression. We used a fluorescence-based neutralization assay to test the sensitivity of SARS-CoV-2 variants (ancestral variant, Beta, Delta, and Omicron BA.1) to the neutralizing response induced by vaccination in highly immunosuppressed allogeneic HSCT recipients, tested after two and three doses of the BNT162b2 vaccine. We show that neutralizing antibody responses to the Beta and Delta variants in most immunocompromised HSCT recipients increased after three vaccine doses up to values similar to those observed in twice-vaccinated healthy adults and were significantly lower against Omicron BA.1. Overall, neutralization titers correlated with the amount of anti-S-RBD antibodies measured by means of enzyme immunoassay, indicating that commercially available assays can be used to quantify the anti-S-RBD antibody response as a reliable surrogate marker of humoral immune protection in both immunocompetent and immunocompromised individuals. Our findings support the recommendation of additional early vaccine doses as a booster of humoral neutralizing activity against emerging variants, in HSCT immunocompromised patients. In the context of Omicron circulation, it further emphasizes the need for reinforcement of preventive measures including the administration of monoclonal antibodies in this high-risk population.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Viral Vaccines , Adult , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
5.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Article in English | MEDLINE | ID: covidwho-1298835

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Subject(s)
COVID-19/complications , COVID-19/virology , Lymphopenia/complications , Neoplasms/complications , RNA, Viral/analysis , SARS-CoV-2/genetics , Virus Shedding , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA, Bacterial/blood , Enterobacteriaceae/genetics , Female , Humans , Interferon Type I/blood , Lymphopenia/virology , Male , Micrococcaceae/genetics , Middle Aged , Nasopharynx/virology , Neoplasms/diagnosis , Neoplasms/mortality , Pandemics , Prognosis , Time Factors , Young Adult
6.
Antimicrob Agents Chemother ; 64(7)2020 06 23.
Article in English | MEDLINE | ID: covidwho-197789

ABSTRACT

Cyclophilins play a key role in the life cycle of coronaviruses. Alisporivir (Debio 025) is a nonimmunosuppressive analogue of cyclosporine with potent cyclophilin inhibition properties. Alisporivir reduced SARS-CoV-2 RNA production in a dose-dependent manner in Vero E6 cells, with a 50% effective concentration (EC50) of 0.46 ± 0.04 µM. Alisporivir inhibited a postentry step of the SARS-CoV-2 life cycle. These results justify rapidly conducting a proof-of-concept phase 2 trial with alisporivir in patients with SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cyclophilins/antagonists & inhibitors , Cyclosporine/pharmacology , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Chlorocebus aethiops , Humans , Pandemics , SARS-CoV-2 , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL